Application of Bessel functions: Transient heat conduction in a thin wall pipe

Copyright Brian G. Higgins (2012)

Introduction

Bessel functions routinely occur in the solution of PDEs defined on a domain described by cylindrical coordinates. In this tutorial we show how Mathematica can be used to help solve problems involving Bessel functions.

Problem Statement

A very long hollow cylinder of inner radius a and outer radius b is made of conducting material of diffusivity κ. If the inner and outer surfaces are kept at temperature zero while the initial temperature is given by the function $F(r)$, where r is the distance from the axis, find the temperature at any point at any later time t. The geometry of the problem is illustrated in the following figure.

Solution

Since the geometry shows no z or ϕ dependence the problem we must solve for the temperature distribution is

$$\frac{\partial u}{\partial t} = k \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} \right), \quad 0 < r < 1$$

IC: $u(r, 0) = F(r)$
BC1: $u(a, t) = 0$
BC2: $u(b, t) = 0$

Following the separation of variables procedure shown in the previous problem, the general solution to the eigenvalue problem

$$\frac{d^2 \phi}{dr^2} + \frac{1}{r} \frac{d\phi}{dr} + \lambda^2 \phi = 0, \quad \phi(a) = 0, \phi(b) = 0$$
is
\[\phi (r) = c_1 J_0 (\lambda r) + c_2 Y_0 (\lambda r) \]

From \(\phi (a) = 0, \phi (b) = 0 \) we find
\[c_1 J_0 (\lambda a) + c_2 Y_0 (\lambda a) = 0, \quad c_1 J_0 (\lambda b) + c_2 Y_0 (\lambda b) = 0 \quad (1) \]

This represents two homogeneous equations for the constants \(c_1 \) and \(c_2 \). We can write this system of equations as
\[
\begin{pmatrix}
J_0 (\lambda a) & Y_0 (\lambda b) \\
J_0 (\lambda b) & Y_0 (\lambda b)
\end{pmatrix}
\begin{pmatrix}
c_1 \\
c_2
\end{pmatrix} = 0
\]

For a non trivial solution to exists, the determinant
\[\det \begin{pmatrix}
J_0 (\lambda a) & Y_0 (\lambda b) \\
J_0 (\lambda b) & Y_0 (\lambda b)
\end{pmatrix} = 0 \]

This gives
\[Y_0 (\lambda a) J_0 (\lambda b) - J_0 (\lambda a) Y_0 (\lambda b) = 0 \]

which is the equation for determining \(\lambda \). This equation has infinitely many roots \(\lambda_1, \lambda_2, \lambda_3, \ldots \)

From the first equation in (1) we can solve for \(c_2 \) in terms of \(c_1 \)
\[c_2 = -\frac{c_1 J_0 (\lambda a)}{Y_0 (\lambda a)} \]

Thus our eigenfunction can be represented by
\[\phi_m (r) = Y_0 (\lambda_m a) J_0 (\lambda_m r) - J_0 (\lambda_m a) Y_0 (\lambda_m r) \]

The general solution can then be written as
\[u (r, t) = \sum_{m=1}^{\infty} A_m e^{-k \lambda_m^2 t} \phi_m (r) \]

with
\[\phi_m (r) = Y_0 (\lambda_m a) J_0 (\lambda_m r) - J_0 (\lambda_m a) Y_0 (\lambda_m r) \]

Note that since our eigenvalue problem is a Sturm Liouville system, we are assured that the eigensolutions \(\phi_m \) are orthogonal to \(\phi_n \) with respect to the weight \(\sigma (r) = r \) i.e.,
\[\int_a^b \phi_m (r) \phi_n (r) r \, dr = 0 \quad \text{if } m \neq n \]

Applying the orthogonality condition to the IC condition relationship
\[u (r, 0) = F (r) = \sum_{m=1}^{\infty} A_m \phi_m (r) \]

gives
\[A_m = \frac{\int_a^b r F (r) \phi_m (r) \, dr}{\int_a^b r \phi_m^2 (r) \, dr} \]

Let us try to see what the eigenvalues look like for this problem. First consider the Bessel function of the Second Kind of order zero, viz., \(Y_0 (r) \). Mathematica has a built-in function for \(Y_0 \) called \textbf{BesselY[0,r]}.

Here is a plot of it
Next let us take \(a = 1, \quad b = 2, \) and then the equation for the eigenvalues is given
\[
f (\lambda) \equiv Y_0 (\lambda) J_0 (2 \lambda) - J_0 (\lambda) Y_0 (2 \lambda) = 0
\]

Here is a plot of this function
\[
eqn = BesselY[0, \lambda] BesselJ[0, 2 \lambda] - BesselJ[0, \lambda] BesselY[0, 2 \lambda];
Plot[eqn, \{\lambda, 0, 40\}, Frame \rightarrow True, FrameLabel \rightarrow \{"r", "f(\lambda)"\}]
\]

Thus the first zero is near 3, the next near 6, the next near 9 etc. We can use \texttt{FindRoot} to determine the roots. Here is the first root \(\lambda_1 \)
\[
\text{FindRoot}[eqn == 0, \{\lambda, 3\}]
\]
\[
\{\lambda \rightarrow 3.12303\}
\]

The following program will calculate as many roots as desired. Please consult the ECH198 notebooks for more details.
Clear[root, guess, rootlist];
guess = 3; rootlist = {}; n = 20;
Do[{root = FindRoot[Evaluate[eqn == 0], {λ, guess}];
AppendTo[rootlist, root[[1, 2]]];
guess = 3 + root[[1, 2]], {i, 1, n}];
rootlist

We can also use Mathematica to test whether the eigenfunctions we found are orthogonal over the interval $r = 1$ to $r = 2$. Let us take ϕ_1 and ϕ_3 for our test case. Thus we must show that

$$
\int_1^2 \phi_1 (r) \phi_3 (r) r \, dr = 0
$$

with

$$
\phi_m (r) = Y_0 (\lambda_m a) J_0 (\lambda_m r) - J_0 (\lambda_m a) Y_0 (\lambda_m r)
$$

Here is the Mathematica code that carries out the test. First we define a function $\lambda[m]$ which extracts the eigenvalues from the list rootlist calculated previously.

$$
\lambda[m_] := rootlist[[m]]
$$

Thus, suppose we want the second eigenvalue

$$
\lambda[2] = 6.27344
$$

Next we define a function $\phi[m, \lambda, r]$ which computes the m-th eigenfunction

$$
\phi[m_, \lambda_, r_] := BesselY[0, \lambda[m]] BesselJ[0, \lambda[m] r] - BesselJ[0, \lambda[m]] BesselY[0, \lambda[m] r]
$$

Here is what ϕ_1 looks like:

$$
\phi[1, \lambda, r] = 0.33499 BesselJ[0, 3.12303 r] + 0.298891 BesselY[0, 3.12303 r]
$$

Now suppose we are given $f (r)$, then the coefficients A_m are determined by

$$
A_m = \int_a^b r f (r) \phi_m (r) \, dr / \int_a^b r \phi_m^2 (r) \, dr
$$

The following Mathematica program calculates the coefficients A_m

Clear[A]
f[r_] := -r (1 - r) (2 - r)
A[m_] := A[m] = NIntegrate[f[r] r, {r, 1, 2}] / NIntegrate[f[r] r, {r, 1, 2}]

The following evaluation of the coefficients takes awhile,

Table[A[m], {m, 1, 10}]

{-2.35751, 0.880954, -0.308691, 0.21773, -0.112521, 0.0965507, -0.0576058, 0.0542662, -0.0348972, 0.0347174}

The general solution to the transient problem is given by
We define the following function that determines the partial sum (m terms)

\[u[r, t] = \sum_{m=1}^{\infty} A_m e^{-\lambda n^2 t} \phi_m(r) \]

Here is a plot of the solution at \(t = 0 \), with 10 terms

\[
\text{Plot}[\text{Evaluate}[u[r, 0, 10]], \{r, 1, 2\}, \text{Frame} \to \text{True}, \text{FrameLabel} \to \{"r", "u(r,0,10)"\}]
\]

The transient solution can be displayed with Plot3D

\[
\text{Plot3D}[\text{Evaluate}[u[r, t, 10]], \{t, 0, .3\}, \{r, 1, 2\}, \text{PlotPoints} \to 20, \text{PlotRange} \to \{0, .4\}]
\]

Finally, we use the function \texttt{NIntegrate} to test the validity of the orthogonality relationship

\[
\text{Quiet}[\text{NIntegrate}[\phi[1, \lambda, r] \phi[3, \lambda, r] r, \{r, 1, 2\}]] = -3.33392 \times 10^{-18}
\]
Thus as expected the eigenfunctions are orthogonal, to the accuracy of the numerical integration.